University of Idaho Pedology Laboratory

Soil and Land Resources Division, College of Agricultural and Life Sciences

Soil Series: Brickel Silt Loam **Pedon Number:** 81-ID-0551

Classification: Loamy-skeletal, isotic Vitrandic Haplocryolls **Date Described:** 9/8/1981

County: Benewah

Date Described: 7/0/17/01

Site Information: NRCS # 81-ID-009-1-1 to 5

Location: 0.75 mi S of Rockat Peak; 1800 ft E & 2300 ft N of the SW corner of Sec. 25, T. 47N., R. 1W.

Elevation: 5440 ft

Landform: mountain slope, steep

Slope: 35 %

Parent Material/Geology: ash and loess over metasediments

Aspect: S

Vegetation: WBP, XETE, LPP, willow

Drainage: well drained

Soil Temperature:

Collected by: NRCS personnel, photo no. 6-37-S

Soil Moisture:

FIELD DATA:

Lab	Horizon	Depth	Field	C	olor	Structure	(onsisten	ice	Roots	Pores	Features	Efferv.	Boun-				
No.	HOHZOH	(cm.)	Texture	Dry	Moist	Structure	Dry	Moist	Wet	Roots	Totes	reatures	Lifery.	dary				
	O1	1-0	Slightly de	Slightly decomposed needles, twigs, & leaves, mixed with St. Helen's volcanic ash.														
1	A11	0-8		10YR 4/1	10YR 2/1	1vf & f gr	lo	fr	so sp	3vf &f, 1m	3vf &f t, int.		eo	cw				
2	A12	8-20		10YR 4/2	10YR 2/2	1vf & f gr	lo	fr	so sp	3vf & f, 1m	3vf &f t, int.		eo	cw				
3	B21	20-43		10YR 5/4	10YR 3/4	1 vf & m sbk	lo	fr	so sp	2vf & f, 1m	2vf &f t, int.		eo	cw				
4	C1	43-71		10YR 6/4	10YR 4/4	massive		lo	so sp	2vf & f	2vf &f t, int.		eo	gw				
	Cr	71+	Metasedin	nentary rock														

PHYSICAL DATA:

Lab		Particle	Size Distri	bution (mn	n) – Sand		Silt	Clay	Textural	Coarse	Bulk	Water C	LOI	
No.	VC	С	M	F	VF	Total	Total	Total	Class	Fragments ¹	Density	33	1500	(400 °C)
110.	(2.0-1.0)	(1.0-0.5)	(0.5-0.25)	(0.25-0.1)	0.1-0.05)	(2.0-0.05)	(0.05-0.002)	(<0.002)	Class	(>2 mm)	(Oven-dry)	kPa	kPa	OM
				%			%	%		W%	g/cc	%		%
1	1.38	0.52	0.62	2.72	5.60	10.82	74.60	14.58	sil	22		62.8	35.1	
2	0.86	0.36	0.42	1.41	6.93	9.99	72.88	17.13	grsil	49		61.1	22.8	
3	1.89	1.81	1.91	7.19	8.31	21.10	68.41	10.49	egrsil	88		50.5	25.9	
4	5.52	5.81	4.28	11.64	9.43	36.68	58.82	4.50	vgrsil	70		28.6	12.3	
					·									

CHEMICAL DATA:

Lab No.	pH 1:5	pH Sat.	pH NaF	Elec Cond	Avail. ² P	NH ₄ OAc Ca ²⁺	C _{pH7} Excha Mg ²⁺	ngeable C Na ⁺	Cations ³ K ⁺	Exch. H ⁺	KCl-Ext. Al ³⁺	CEC _{pH7}	ECEC ⁴	Base ⁵ Sat.	ESP ⁶	Org. C	N	C:N
				(dS/m)	mg kg ⁻¹		%%											
1		5.2	9.2	0.15	1.6	5.1	1.8	0.1	1.2	44.5		35.4		16		10.9	0.60	18
2		5.2	10.7	0.11	0.7	3.4	1.3	0.1	1.0	53.1		37.9		10		8.6	0.49	18
3		5.0	11.7	0.04	3.7	0.5	0.1	0.1	0.3	50.4		27.6		2		6.7	0.45	15
4		5.0	11.4	0.04	7.8	0.1	< 0.1	0.2	0.2	24.6		14.5		2		1.9	0.15	13

CHEMICAL DATA (cont.):

Lab	Sat. Paste		Satura	ated Pa	ste Ex	tract -	- Soluble	Ions		SAR	Gypsum	CaCO ₃	P	CBD		Pyro.		AOD				
No.	H_2O	Ca ²⁺	Mg^{2+}	Na ⁺	\mathbf{K}^{+}	CO ₃	HCO ₃	Cl	SO_4^{2-}	7	Сурѕиш	CaCO ₃	Ret.	Fe	Al	Fe	Al	Fe	Al	Si	P	
	%	cmol _c kg ⁻¹									%	6	%				·	<u>%</u>				
1	82													0.98	0.40	0.31	0.40					
2	86													1.55	0.75	0.56	0.62					
3	82													0.95	1.02	0.54	1.06					
4	50													0.90	0.52	0.22	0.39					
						·							•			·						

1 Coarse fragments (>2mm) = (wt. coarse fragments >2mm / wt. soil + coarse fragments)*100

Note: This includes gravels, stones, & cobbles, if information is available.

- Available phosphorus was extracted with 0.7M sodium acetate pH 4.8. 2
- Extractable cations (NH₄OAc_{pH7}) soluble cations (saturated paste extract) = exchangeable cations Note: units are meq/100g or cmol_c kg⁻¹ 3 If there are not any soluble cations assume extractable cations are exchangeable.
- ECEC = Sum of bases + extractable $A1^{3+}$ 4
- Base Sat % = (sum of bases/sum of bases + H^+)*100 or (sum of bases/ECEC)*100 or (sum of bases/CEC_{pH 7})*100 5
- 6
- ESP = exchangeable sodium percent = (Exchangeable NH₄OAc_{pH 7} Na⁺/CEC_{pH 7})*100 SAR = sodium absorption ratio = [Na⁺] / (([Ca²⁺] + [Mg²⁺])/2)^{1/2} Note: conc. are in meq/L 7

 $NH_4OAc_{pH7} = NH_4OAc$ at pH 7.0 Note:

 $CEC_{pH7} = CEC$ at pH 7.0

CEC_{pH7} solutions were obtained by leaching soil with 10% acidified NaCl. Solutions were analyzed by steam distillation, Technicon Autoanalyzer or by Lachat Quikchem autoanalyzer for N-NH₄.

Nitrogen and CEC were run on the Technicon Autoanalyzer.

Rock is not accounted for in analyses unless noted on the data sheets.

Soil fraction = wt. of soil (g) / wt. of soil + coarse fragments >2mm (g)

A soil without rock (>2mm) would have a soil fraction of 1.